A global atmospheric analysis dataset is constructed via a spectral nudging technique. The 6-hourly National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis from January 1979 to February 2011 is utilized to force large-scale information, whereas a higher-resolution structure is resolved by a global model with improved physics. The horizontal resolution of the downscaled data is about 100 km, twice that of the NCEP–DOE reanalysis. A comparison of the 31-yr downscaled data with reanalysis data and observations reveals that the downscaled precipitation climatology is improved by correcting inherent biases in the lower-resolution reanalysis, and large-scale patterns are preserved. In addition, it is found that global downscaling is an efficient way to generate high-quality analysis data due to the use of a higher-resolution model with improved physics. The uniqueness of the obtained data lies in the fact that an undesirable decadal trend in the analysis due to a change in the amount of observations used in reanalysis is avoided. As such, a downscaled dataset may be used to investigate changes in the hydrological cycle and related mechanisms.
Not available
Authors who have authored or contributed to this publication.
Not available