Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Assimilating Amsu-a Radiances In The Tc Core Area With NOAA Operational HWRF (2011) and A Hybrid Data Assimilation System: Danielle (2010)

Abstract

A regional hybrid variational–ensemble data assimilation system (HVEDAS), the maximum likelihood ensemble filter (MLEF), is applied to the 2011 version of the NOAA operational Hurricane Weather Research and Forecasting (HWRF) model to evaluate the impact of direct assimilation of cloud-affected Advanced Microwave Sounding Unit-A (AMSU-A) radiances in tropical cyclone (TC) core areas. The forward components of both the gridpoint statistical interpolation (GSI) analysis system and the Community Radiative Transfer Model (CRTM) are utilized to process and simulate satellite radiances. The central strategies to allow the use of cloud-affected radiances are (i) to augment the control variables to include clouds and (ii) to add the model cloud representations in the observation forward models to simulate the microwave radiances. The cloudy AMSU-A radiance assimilation in Hurricane Danielle's (2010) core area has produced encouraging results with respect to the operational cloud-cleared radiance preprocessing procedures used in this study. Through the use of the HVEDAS, ensemble covariance statistics for a pseudo-AMSU-A observation in Danielle's core area show physically meaningful error covariances and statistical couplings with hydrometeor variables (i.e., the total-column condensate in Ferrier microphysics). The cloudy radiance assimilation in the TC core region (i.e., ASR experiment) consistently reduced the root-mean-square errors of the background departures, and also generally improved the forecasts of Danielle's intensity as well as the quantitative cloud analysis and prediction. It is also indicated that an entropy-based information content quantification process provides a useful metric for evaluating the utility of satellite observations in hybrid data assimilation.

Article / Publication Data
Active/Online
YES
Volume
141
Available Metadata
Accepted On
April 30, 2013
DOI ↗
Fiscal Year
Publication Name
Monthly Weather Review
Published On
November 01, 2013
Final Online Publication On
April 01, 2013
Print Volume
141
Print Number
11
Page Range
3889-3907
Submitted On
November 29, 2012
URL ↗

Institutions

Not available

Authors

Authors who have authored or contributed to this publication.

Not available