Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Subkilometer Simulation of A Torrential-rain-producing Mesoscale Convective System In East China. Part I: Model Verification and Convective Organization

Abstract

A nocturnal torrential-rain-producing mesoscale convective system (MCS) occurring during the mei-yu season of July 2003 in east China is studied using conventional observations, surface mesoanalysis, satellite and radar data, and a 24-h multinested model simulation with the finest grid spacing of 444 m. Observational analyses reveal the presence of several larger-scale conditions that were favorable for the development of the MCS, including mei-yu frontal lifting, moderate cold advection aloft and a moist monsoonal flow below, and an elongated old cold dome left behind by a previously dissipated MCS. Results show that the model could reproduce the evolution of the dissipating MCS and its associated cold outflows, the triggering of three separate convective storms over the remnant cold dome and the subsequent organization into a large MCS, and the convective generation of an intense surface meso-high and meso-?-scale radar reflectivity morphologies. In particular, the model reproduces the passage of several heavy-rain-producing convective bands at the leading convective line and the trailing stratiform region, leading to the torrential rainfall at nearly the right location. However, many of the above features are poorly simulated or missed when the finest model grid uses either 1.33- or 4-km grid spacing. Results indicate the important roles of isentropic lifting of moist monsoonal air over the cold dome in triggering deep convection, a low-level jet within an elevated moist layer in maintaining conditional instability, and the repeated formation and movement of convective cells along the same path in producing the torrential rainfall.

Article / Publication Data
Active/Online
YES
Volume
140
Available Metadata
Accepted On
June 26, 2011
DOI ↗
Fiscal Year
Publication Name
Monthly Weather Review
Published On
January 01, 2012
Final Online Publication On
January 01, 2012
Print Volume
140
Print Number
1
Page Range
184–201
Submitted On
January 25, 2011
URL ↗

Institutions

Not available

Authors

Authors who have authored or contributed to this publication.

Not available