Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

HRRR-AK: A High-resolution, Rapidly Cycled Forecast Model For Alaska


The 3-km convection-allowing High-Resolution Rapid Refresh (HRRR), Alaska version (HRRR-AK) is a rapidly updating weather forecast model that uses a specially configured version of the Advanced Research WRF (ARW) model and assimilates many novel and conventional observations using Gridpoint Statistical Interpolation (GSI). HRRR-AK incorporates recent enhancements of the HRRR model physics suite, including improved land-surface and boundary layer prediction using the updated Mellor-Yamada-Nakanishi-Niino (MYNN) parameterization scheme, aerosol-aware Thompson microphysics and an upgraded Rapid Update Cycle (RUC) land-surface model. HRRR-AK is cycled every 3 h with a forecast length of 36 h, following a 1-h pre-forecast, data assimilation cycle. Initial and boundary conditions come from an experimental version of the 13-km Rapid Refresh (RAP) model, which was recently expanded in geographic area. Future plans include assimilation of radar reflectivity from the Multi-Radar, Multi-Sensor (MRMS) system to better initialize ongoing precipitation structures, and use of additional satellite- and surface-based datasets to improve the model initial state. This presentation will highlight the potential for HRRR-AK to improve weather prediction over the vast and varied terrain of Alaska, including processes associated with complex terrain (e.g., gap flows, downslope windstorms), the arctic environment (e.g., nocturnal and persistent temperature inversions), and coastal/offshore areas (e.g., sea ice). In addition to objective verification statistics, several case study examples will be presented to showcase forecasts for particularly challenging regions and weather phenomena.

Article / Publication Data
Available Metadata
Fiscal Year
Published On
January 01, 2017

This publication was presented at the following:

2017 - 97th AMS Annual Meeting
Amer. Meteor. Soc.
Conference presentation


Not available


Authors who have authored or contributed to this publication.

Not available