Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Confronting Uncertainties of Simulated Air Pollution Concentrations During Persistent Cold Air Pool Events In The Salt Lake Valley, Utah

Abstract

Air pollutant accumulations during wintertime persistent cold air pool (PCAP) events in mountain valleys are of great concern for public health worldwide. Uncertainties associated with the simulated meteorology under stable conditions over complex terrain hinder realistic simulations of air quality using chemical transport models. We use the Community Multiscale Air Quality (CMAQ) model to simulate the gaseous and particulate species for 1 month in January 2011 during the Persistent Cold Air Pool Study (PCAPS) in the Salt Lake Valley (SLV), Utah (USA). Results indicate that the temporal variability associated with the elevated NOx and PM2.5 concentrations during PCAP events was captured by the model (r = 0.20 for NOx and r = 0.49 for PM2.5). However, concentrations were not at the correct magnitude (NMB = −35/12% for PM2.5 during PCAPs/non-PCAPs), where PM2.5 was underestimated during PCAP events and overestimated during non-PCAP periods. The underestimated PCAP strength is represented by valley heat deficit, which contributed to the underestimated PM2.5 concentrations compared with observations due to the model simulating more vertical mixing and less stable stratification than what was observed. Based on the observations, the dominant PM2.5 species were ammonium and nitrate. We provide a discussion that aims to investigate the emissions and chemistry model uncertainties using the nitrogen ratio method and the thermodynamic ammonium nitrate regime method.

Article / Publication Data
Active/Online
YES
Available Metadata
DOI ↗
Early Online Release
October 28, 2021
Fiscal Year
Peer Reviewed
YES
Publication Name
Environmental Science & Technology
Published On
November 16, 2021
Publisher Name
American Chemical Society
Print Volume
55
Issue
22
Submitted On
August 16, 2021
URL ↗

Institutions

Not available

Author

Authors who have authored or contributed to this publication.

  • Xia Sun - lead Gsl
    Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
    NOAA/Global Systems Laboratory