Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

A Climatological Study of Thermally Driven Wind Systems of The Us Intermountain West

Abstract

This paper investigates the diurnal evolution of thermally driven. plain-mountain winds, up- and down-valley winds, up- and downslope winds, and land-lake breezes for summer fair weather conditions in four regions of the Intermountain West where dense wind networks have been operated. Because of the diverse topography in these regions, the results are expected to be broadly representative of thermally driven wind climates in the Intermountain West. The regions include the Wasatch Front Valleys of northern Utah, the Snake River Plain of Idaho, the southern Nevada basin and range province, and central Arizona. The analysis examines wind characteristics, including the regularity of the winds and interactions of the four types of thermally driven winds, using meteorological data from the University of Utah's MesoWest network. In general, on fair weather days, winds in all four regions exhibit a consistent direction from day to day at a given hour. A measure of this wind consistency is defined. The nighttime hours exhibit a generally higher consistency than the daytime hours. Lower consistency during the day-night and night-day transition periods reflects day-to-day variations in the timing of wind system reversals. Thermally driven circulations are similar in the four regions, but the Wasatch Front Valleys are influenced by lake breezes from the adjacent Great Salt Lake, the Snake River Plain is influenced by along-plain circulations and localized outflow from the Central Idaho Mountains, and winds in both southern.

Article / Publication Data
Active/Online
YES
ISSN
0003-0007
Volume
83
Available Metadata
Fiscal Year
Publication Name
Bulletin of The American Meteorological Society
Published On
January 01, 2002
Publisher Name
Amer Meteorological Soc
Print Volume
83
Print Number
5

Institutions

Not available

Author

Authors who have authored or contributed to this publication.