Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Extreme Rapid Intensification of Typhoon Vicente (2012) In The South China Sea

Abstract

One of the primary challenges for both tropical cyclone (TC) research and forecasting is the problem of intensity change. Accurately forecasting TC rapid intensification (RI) is particularly important to interests along coastlines and shipping routes, which are vulnerable to storm surge and heavy seas induced by intense tropical cyclones. One particular RI event in the western North Pacific Ocean with important scientific implications is the explosive deepening of Typhoon Vicente (2012). Vicente underwent extreme RI in the northern South China Sea just prior to landfall west of Hong Kong, China, with maximum sustained winds increasing from 50 kt (1 kt = 0.51 m s?1) at 0000 UTC 23 July to 115 kt at 1500 UTC 23 July. This increase of 65 kt in 15 h far exceeds established thresholds for TC RI. Just prior to this RI episode, Vicente exhibited a near-90° poleward track shift. The relationship between the track and intensity change is described, and the authors speculate that the passage of an upper-tropospheric (UT) “inverted” trough was a significant influence. An analysis of real-time numerical model guidance is provided and is discussed from an operational perspective, and high-resolution global model analyses are evaluated. Numerical model forecasts of the UT trough interaction with the TC circulation were determined to be a shortcoming that contributed to the intensity prediction errors for Vicente. This case study discusses the importance of considering UT features in TC intensity forecasting and establishes current modeling capabilities for future research.

Article / Publication Data
Active/Online
YES
Volume
28
Available Metadata
Accepted On
August 29, 2013
DOI ↗
Fiscal Year
Publication Name
Wea. Forecasting
Published On
December 01, 2013
Final Online Publication On
December 01, 2013
Print Volume
28
Print Number
6
Page Range
1578-1587
Submitted On
June 28, 2013
URL ↗

Institutions

Not available

Authors

Authors who have authored or contributed to this publication.

Not available