Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

An Intercomparison of T-REX Mountain-wave Simulations and Implications For Mesoscale Predictability

Abstract

Numerical simulations of flow over steep terrain using 11 different nonhydrostatic numerical models are compared and analyzed. A basic benchmark and five other test cases are simulated in a two-dimensional framework using the same initial state, which is based on conditions during Intensive Observation Period (IOP) 6 of the Terrain-Induced Rotor Experiment (T-REX), in which intense mountain-wave activity was observed. All of the models use an identical horizontal resolution of 1 km and the same vertical resolution. The six simulated test cases use various terrain heights: a 100-m bell-shaped hill, a 1000-m idealized ridge that is steeper on the lee slope, a 2500-m ridge with the same terrain shape, and a cross-Sierra terrain profile. The models are tested with both free-slip and no-slip lower boundary conditions. The results indicate a surprisingly diverse spectrum of simulated mountain-wave characteristics including lee waves, hydraulic-like jump features, and gravity wave breaking. The vertical velocity standard deviation is twice as large in the free-slip experiments relative to the no-slip simulations. Nevertheless, the no-slip simulations also exhibit considerable variations in the wave characteristics. The results imply relatively low predictability of key characteristics of topographically forced flows such as the strength of downslope winds and stratospheric wave breaking. The vertical flux of horizontal momentum, which is a domain-integrated quantity, exhibits considerable spread among the models, particularly for the experiments with the 2500-m ridge and Sierra terrain. The differences among the various model simulations, all initialized with identical initial states, suggest that model dynamical cores may be an important component of diversity for the design of mesoscale ensemble systems for topographically forced flows. The intermodel differences are significantly larger than sensitivity experiments within a single modeling system.

Article / Publication Data
Active/Online
YES
Volume
139
Available Metadata
Accepted On
March 20, 2011
DOI ↗
Fiscal Year
Publication Name
Monthly Weather Review
Published On
September 01, 2011
Final Online Publication On
September 01, 2011
Publisher Name
Amer Meteorological Soc
Print Volume
139
Print Number
9
Page Range
2811-2831
Submitted On
October 29, 2010
URL ↗

Institutions

Not available

Author

Authors who have authored or contributed to this publication.