Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

A Multistep Flux-corrected Transport Scheme

Abstract

A multistep flux-corrected transport (MFCT) scheme is developed to achieve conservative and monotonic tracer transports for multistep dynamical cores. MFCT extends Zalesak two-time level scheme to any multistep time-differencing schemes by including multiple high-order fluxes in the antidiffusive flux, while computing the two-time level low-order monotone solution. The multistep time-differencing scheme used in this study is the third-order Adams–Bashforth (AB3) scheme implemented in a finite-volume icosahedral shallow-water model. The accuracy of AB3 MFCT is quantified by the shape-preserving advection experiments in non-divergent flow, as well as a cosine bell whose shape changes during advection in shear flow. AB3 MFCT has been shown to be insensitive to time step size. This make AB3 MFCT an attractive transport scheme for explicit high resolution model applications with small time step. MFCT is tested in shallow-water model simulations to demonstrate that the use of MFCT maintains positive-definite tracer transport, while at the same time conserving both fluid mass and tracer mass within round-off errors in the AB3 dynamic core.

Article / Publication Data
Active/Online
YES
ISSN
0021-9991
Volume
229
Available Metadata
Accepted On
August 31, 2010
DOI ↗
Fiscal Year
Publication Name
Journal of Computational Physics
Published On
December 01, 2010
Final Online Publication On
September 01, 2010
Publisher Name
Elsevier Ltd.
Print Volume
229
Print Number
24
Page Range
9284–9298
Submitted On
March 12, 2010
URL ↗

Institutions

Not available

Author

Authors who have authored or contributed to this publication.