Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Description and Analysis of The Ocean Component of Noaa’s Operational Hurricane Weather Research and Forecasting Model (HWRF)

Abstract

The Princeton Ocean Model for Tropical Cyclones (POM-TC), a version of the three-dimensional primitive equation numerical ocean model known as the Princeton Ocean Model, was the ocean component of NOAA’s operational Hurricane Weather Research and Forecast Model (HWRF) from 2007 to 2013. The coupled HWRF–POM-TC system facilitates accurate tropical cyclone intensity forecasts through proper simulation of the evolving SST field under simulated tropical cyclones. In this study, the 2013 operational version of HWRF is used to analyze the POM-TC ocean temperature response in retrospective HWRF–POM-TC forecasts of Atlantic Hurricanes Earl (2010), Igor (2010), Irene (2011), Isaac (2012), and Leslie (2012) against remotely sensed and in situ SST and subsurface ocean temperature observations. The model generally underestimates the hurricane-induced upper-ocean cooling, particularly far from the storm track, as well as the upwelling and downwelling oscillation in the cold wake, compared with observations. Nonetheless, the timing of the model SST cooling is generally accurate (after accounting for along-track timing errors), and the ocean model’s vertical temperature structure is generally in good agreement with observed temperature profiles from airborne expendable bathythermographs.

Article / Publication Data
Active/Online
YES
Volume
32
Available Metadata
Accepted On
September 05, 2014
DOI ↗
Fiscal Year
Peer Reviewed
YES
Publication Name
Journal of Atmospheric and Oceanic Technology
Published On
January 01, 2015
Publisher Name
American Meteorological Society
Print Volume
32
Print Number
1
Page Range
144-163
Issue
1
Submitted On
March 28, 2014
URL ↗

Authors

Authors who have authored or contributed to this publication.