Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Greenland Clouds Observed In Calipso-goccp: Comparison With Ground-based Summit Observations


Spaceborne lidar observations from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provide the first-ever observations of cloud vertical structure and phase over the entire Greenland Ice Sheet. This study leverages CALIPSO observations over Greenland to pursue two investigations. First, the GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) observations are compared with collocated ground-based radar and lidar observations at Summit, Greenland. The liquid cloud cover agrees well between the spaceborne and ground-based observations. In contrast, ground–satellite differences reach 30% in total cloud cover and 40% in cloud fraction below 2 km above ground level, due to optically very thin ice clouds (IWC < 2.5 × 10−3 g m−3) missed by CALIPSO-GOCCP. Those results are compared with satellite cloud climatologies from the GEWEX cloud assessment. Most passive sensors detect fewer clouds than CALIPSO-GOCCP and the Summit ground observations, due to different detection methods. Second, the distribution of clouds over the Greenland is analyzed using CALIPSO-GOCCP. Central Greenland is the cloudiest area in summer, at +7% and +4% above the Greenland-wide average for total and liquid cloud cover, respectively. Southern Greenland contains free-tropospheric thin ice clouds in all seasons and liquid clouds in summer. In northern Greenland, fewer ice clouds are detected than in other areas, but the liquid cloud cover seasonal cycle in that region drives the total Greenland cloud annual variability with a maximum in summer. In 2010 and 2012, large ice-sheet melting events have a positive liquid cloud cover anomaly (from +1% to +2%). In contrast, fewer clouds (−7%) are observed during low ice-sheet melt years (e.g., 2009).

Article / Publication Data
Available Metadata
Accepted On
March 27, 2017
Fiscal Year
Peer Reviewed
Publication Name
Journal of Climate
Published On
August 01, 2017
Publisher Name
American Meteorological Society
Print Volume
Print Number
Page Range
Submitted On
July 27, 2016


Authors who have authored or contributed to this publication.