Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Thin Ice Clouds In The Arctic: Cloud Optical Depth and Particle Size Retrieved From Ground-based Thermal Infrared Radiometry

Abstract

Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter  ≤  30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter  >  30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 =  0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.

Article / Publication Data
Active/Online
YES
Volume
10
Available Metadata
Accepted On
April 28, 2017
DOI ↗
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Atmospheric Measurement Techniques
Published On
June 09, 2017
Publisher Name
European Geosciences Union
Print Volume
10
Print Number
6
Page Range
2129–2147
Issue
6
Submitted On
November 08, 2016
URL ↗

Authors

Authors who have authored or contributed to this publication.