Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Impacts of Targeted Aeri and Doppler Lidar Wind Retrievals On Short-term Forecasts of The Initiation and Early Evolution of Thunderstorms

Abstract

The ability of Atmospheric Emitted Radiance Interferometer (AERI) and Doppler lidar (DL) wind profile observations to impact short-term forecasts of convection is explored by assimilating retrievals into a partially cycled convection-allowing ensemble analysis and forecast system. AERI and DL retrievals were obtained over 12 days using a mobile platform that was deployed in the preconvective and near-storm environments of thunderstorms during the afternoon in the U.S. Great Plains. The observation locations were guided by real-time ensemble sensitivity analysis (ESA) fields. AERI retrievals of temperature and dewpoint and DL retrievals of the horizontal wind components were assimilated into a control experiment that only assimilated conventional observations. Using the fractions skill score within 25-km neighborhoods, it is found that the assimilation of the AERI and DL retrievals results in far more times when the forecasts are improved than degraded in the 6-h forecast period. However, statistical confidence in the improvements often is not high and little to no relationships between the ESA fields and the actual changes in spread and skill is found. But, the focus on convective initiation and early convective evolution—a challenging forecast problem—and the fact that frequent improvements were seen despite observations from only one system over a limited period, provides encouragement to continue exploring the benefits of ground-based profilers to supplement the current upper-air observing system for severe weather forecasting applications.

Article / Publication Data
Active/Online
YES
Volume
147
Available Metadata
Accepted On
December 19, 2018
DOI ↗
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Monthly Weather Report
Published On
April 01, 2019
Publisher Name
American Meteorological Society
Print Volume
147
Print Number
4
Page Range
1149–1170
Issue
4
Submitted On
October 02, 2018
URL ↗

Authors

Authors who have authored or contributed to this publication.