Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Survey of Data Assimilation Methods For Convective-scale Numerical Weather Prediction at Operational Centres

Abstract

Data assimilation (DA) methods for convective-scale numerical weather prediction at operational centres are surveyed. The operational methods include variational methods (3D-Var and 4D-Var), ensemble methods (LETKF) and hybrids between variational and ensemble methods (3DEnVar and 4DEnVar). At several operational centres, other assimilation algorithms, like latent heat nudging, are additionally applied to improve the model initial state, with emphasis on convective scales. It is demonstrated that the quality of forecasts based on initial data from convective-scale DA is significantly better than the quality of forecasts from simple downscaling of larger-scale initial data. However, the duration of positive impact depends on the weather situation, the size of the computational domain and the data that are assimilated. Furthermore it is shown that more advanced methods applied at convective scales provide improvements over simpler methods. This motivates continued research and development in convective-scale DA. Challenges in research and development for improvements of convective-scale DA are also reviewed and discussed. The difficulty of handling the wide range of spatial and temporal scales makes development of multi-scale assimilation methods and space–time covariance localization techniques important. Improved utilization of observations is also important. In order to extract more information from existing observing systems of convective-scale phenomena (e.g. weather radar data and satellite image data), it is necessary to provide improved statistical descriptions of the observation errors associated with these observations.

Article / Publication Data
Active/Online
YES
Volume
144
Available Metadata
Accepted On
October 09, 2017
DOI ↗
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Quarterly Journal of The Royal Meteorological Society
Published On
March 01, 2018
Publisher Name
Royal Meteorological Society
Print Volume
144
Print Number
713
Page Range
1218-1256
Issue
713
Submitted On
March 31, 2017
URL ↗

Authors

Authors who have authored or contributed to this publication.