Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

On The Prospects For Improved Tropical Cyclone Track Forecasts

Abstract

The success story of Numerical Weather Prediction is often illustrated with the dramatic decrease of errors in tropical cyclone track forecasts over the past decades. In a recent essay, Landsea and Cangialosi (2018), however, note a diminishing trend in the reduction of perceived positional error (PPE, difference between forecast and observed positions) in National Hurricane Center tropical cyclone (TC) forecasts as they contemplate whether “the approaching limit of predictability for tropical cyclone track prediction is near or has already been reached”. In this study we consider a different interpretation of the PPE data. First, we note that PPE is different from true positional error (TPE, difference between forecast and true positions) as it is influenced by the error in the observed position of TCs. PPE is still customarily used as a proxy for TPE since the latter is not directly measurable. As an alternative, TPE is estimated here with an inverse method, using PPE measurements and a theoretically based assumption about the exponential growth of TPE as a function of lead time. 89% variance in the behavior of 36-120 hour lead time 2001-2017 seasonally averaged PPE measurements is explained with an error model using just four parameters. Assuming that the level of investments, and the pace of improvements to the observing, modeling, and data assimilation systems continue unabated, the 4-parameter error model indicates that the time limit of predictability at the 181 nm error level, reached at day 5 in 2017, may be extended beyond 6 / 8 days in 10 / 30 years’ time.

Article / Publication Data
Active/Online
YES
Volume
101
Available Metadata
Accepted On
July 05, 2020
DOI ↗
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Bulletin of The American Meteorological Society
Published On
December 08, 2020
Publisher Name
American Meteorological Society
Print Volume
101
Print Number
12
Page Range
E2058–E2077
Issue
12
URL ↗

Authors

Authors who have authored or contributed to this publication.