Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

What Does A CONVECTION-ALLOWING Ensemble of Opportunity Buy Us In Forecasting Thunderstorms?

Abstract

The High Resolution Ensemble Forecast v2.1 (HREFv2.1), an operational convection-allowing model (CAM) ensemble, is an “ensemble of opportunity” wherein forecasts from several independently designed deterministic CAMs are aggregated and postprocessed together. Multiple dimensions of diversity in the HREFv2.1 ensemble membership contribute to ensemble spread, including model core, physics parameterization schemes, initial conditions (ICs), and time lagging. In this study, HREFv2.1 forecasts are compared against the High Resolution Rapid Refresh Ensemble (HRRRE) and the Multiscale data Assimilation and Predictability (MAP) ensemble, two experimental CAM ensembles that ran during the 5-week Spring Forecasting Experiment (SFE) in spring 2018. The HRRRE and MAP are formally designed ensembles with spread achieved primarily through perturbed ICs. Verification in this study focuses on composite radar reflectivity and updraft helicity to assess ensemble performance in forecasting convective storms. The HREFv2.1 shows the highest overall skill for these forecasts, matching subjective real-time impressions from SFE participants. Analysis of the skill and variance of ensemble member forecasts suggests that the HREFv2.1 exhibits greater spread and more effectively samples model uncertainty than the HRRRE or MAP. These results imply that to optimize skill in forecasting convective storms at 1–2-day lead times, future CAM ensembles should employ either diverse membership designs or sophisticated perturbation schemes capable of representing model uncertainty with comparable efficacy.

Article / Publication Data
Active/Online
YES
Available Metadata
DOI ↗
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Weather and Forecasting
Published On
October 23, 2020
Publisher Name
American Meteorological Society
Print Volume
35
Issue
6
URL ↗

Authors

Authors who have authored or contributed to this publication.