Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Using Deep Learning To Emulate and Accelerate A Radiative Transfer Model

Abstract

This paper describes the development of U-net++ models, a type of neural network that performs deep learning, to emulate the shortwave Rapid Radiative Transfer Model (RRTM). The goal is to emulate the RRTM accurately in a small fraction of the computing time, creating a U-net++ that could be used as a parameterization in numerical weather prediction (NWP). Target variables are surface downwelling flux, top-of-atmosphere upwelling flux (F TOA/up), net flux, and a profile of radiative-heating rates. We have devised several ways to make the U-net++ models knowledge-guided, recently identified as a key priority in machine learning (ML) applications to the geosciences. We conduct two experiments to find the best U-net++ configurations. In experiment 1, we train on nontropical sites and test on tropical sites, to assess extreme spatial generalization. In experiment 2, we train on sites from all regions and test on different sites from all regions, with the goal of creating the best possible model for use in NWP. The selected model from experiment 1 shows impressive skill on the tropical testing sites, except four notable deficiencies: large bias and error for heating rate in the upper stratosphere, unreliable F TOA/up for profiles with single-layer liquid cloud, large heating-rate bias in the midtroposphere for profiles with multilayer liquid cloud, and negative bias at low zenith angles for all flux components and tropospheric heating rates. The selected model from experiment 2 corrects all but the first deficiency, and both models run ~104 times faster than the RRTM. Our code is available publicly. TOA up for profiles with single-layer liquid cloud, large heating-rate bias in the mid-troposphere for profiles with multi-layer liquid cloud, and negative bias at lowzenith angles for all flux components and tropospheric heating rates. The selected model from Experiment 2 corrects all but the first deficiency, and both models run ~104 times faster than the RRTM. Our code is available publicly.

Article / Publication Data
Active/Online
YES
Available Metadata
DOI ↗
Early Online Release
July 28, 2021
Fiscal Year
Peer Reviewed
YES
Publication Name
Journal of Atmospheric and Oceanic Technology
Published On
September 21, 2021
Publisher Name
American Meteorological Society
Print Volume
38
Issue
10
Submitted On
February 21, 2021
URL ↗

Authors

Authors who have authored or contributed to this publication.