Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Using The U.S. Climate Reference Network To Identify Biases In Near- and Subsurface Meteorological Fields In The HIGH-RESOLUTION Rapid Refresh (HRRR) Weather Prediction Model


The ability of high-resolution mesoscale models to simulate near-surface and subsurface meteorological processes is critical for representing land–atmosphere feedback processes. The High-Resolution Rapid Refresh (HRRR) model is a 3-km numerical weather prediction model that has been used operationally since 2014. In this study, we evaluated the HRRR over the contiguous United States from 1 January 2021 to 31 December 2021. We compared the 1-, 3-, 6-, 12-, 18-, 24-, 30-, and 48-h forecasts against observations of air and surface temperature, shortwave radiation, and soil temperature and moisture from the 114 stations of the U.S. Climate Reference Network (USCRN) and evaluated the HRRR’s performance for different geographic regions and land cover types. We found that the HRRR well simulated air and surface temperatures, but underestimated soil temperatures when temperatures were subfreezing. The HRRR had the largest overestimates in shortwave radiation under cloudy skies, and there was a positive relationship between the shortwave radiation mean bias error (MBE) and air temperature MBE that was stronger in summer than winter. Additionally, the HRRR underestimated soil moisture when the values exceeded about 0.2 m3 m−3, but overestimated soil moisture when measurements were below this value. Consequently, the HRRR exhibited a positive soil moisture MBE over the drier areas of the western United States and a negative MBE over the eastern United States. Although caution is needed when applying conclusions regarding HRRR’s biases to locations with subgrid-scale land cover variations, general knowledge of HRRR’s biases will help guide improvements to land surface models used in high-resolution weather forecasting models.

Article / Publication Data
Available Metadata
Early Online Release
June 07, 2023
Fiscal Year
Peer Reviewed
Publication Name
Published On
June 01, 2023
Publisher Name
AMS Journals
Print Volume


Authors who have authored or contributed to this publication.