Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Comparison of Adaptive Mesh Refinement Techniques For Numerical Weather Prediction.

Abstract

This paper examines the application of adaptive mesh refinement (AMR) in the field of numerical weather prediction (NWP). We implement and assess two distinct AMR approaches and evaluate their performance through standard NWP benchmarks. In both cases, we solve the fully compressible Euler equations, fundamental to many non-hydrostatic weather models. The first approach utilizes oct-tree cell-based mesh refinement coupled with a high-order discontinuous Galerkin method for spatial discretization. In the second approach, we employ level-based AMR with the finite difference method. Our study provides insights into the accuracy and benefits of employing these AMR methodologies for the multi-scale problem of NWP. Additionally, we explore essential properties including their impact on mass and energy conservation. Moreover, we present and evaluate an AMR solution transfer strategy for the tree-based AMR approach that is simple to implement, memory-efficient, and ensures conservation for both flow in the box and sphere. Furthermore, we discuss scalability, performance portability, and the practical utility of the AMR methodology within an NWP framework – crucial considerations in selecting an AMR approach. The current de facto standard for mesh refinement in NWP employs a relatively simplistic approach of static nested grids, either within a general circulation model or a separately operated regional model with loose one-way synchronization. It is our hope that this study will stimulate further interest in the adoption of AMR frameworks like AMReX in NWP. These frameworks offer a triple advantage: a robust dynamic AMR for tracking localized and consequential features such as tropical cyclones, extreme scalability, and performance portability.

Article / Publication Data
Active/Online
YES
Available Metadata
Fiscal Year
Publication Name
Atmospheric Research
Published On
April 25, 2024
URL ↗

Authors

Authors who have authored or contributed to this publication.

  • Daniel Abdi - Not Positioned Gsl
    Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
    NOAA/Global Systems Laboratory
  • Isidora Jankov - Not Positioned Gsl
    Federal