Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Short-range Forecast Impact From Assimilation of GPS-IPW Observations Into The Rapid Update Cycle

Abstract

Integrated precipitable water ( IPW) estimates derived from time delays in the arrival of global positioning system ( GPS) satellite signals are a relatively recent, high- frequency source of atmospheric moisture information available for real- time data assimilation. Different experimental versions of the Rapid Update Cycle ( RUC) have assimilated these observations to assess GPS- IPW impact on moisture forecasts. In these tests, GPS- IPW data have proven to be a useful real- time source of moisture information, leading to more accurate short- range moisture forecasts when added to other observations. A multiyear experiment with parallel ( one with GPS- IPW processed 24 h after the fact, one without) 3- h cycles using the original 60- km RUC was run from 1999 to 2004 with verification of each cycle against rawinsonde observations. This experiment showed a steady increase in the positive impact in short- range relative humidity ( RH) forecasts due to the GPS- IPW data as the number of observing sites increased from 18 to almost 300 ( as of 2004) across the United States and Canada. Positive impact from GPS- IPW on 850 - 700- hPa RH forecasts was also evident in 6- and 12- h forecasts. The impact of GPS- IPW data was also examined on forecasts from the more recent 20- km RUC, including a 1- h assimilation cycle and improved assimilation and physical parameterizations, now using real- time GPS- IPW retrievals available 30 min after valid time. In a 3- month comparison during the March - May 2004 period, 20- km RUC cycles with and without assimilation of GPS- IPW were compared with IPW for 3-, 6-, 9-, and 12- h forecasts. Using this measure, assimilation of GPS- IPW data led to the strongest improvements in the 3- and 6- h forecasts and smaller but still evident improvements in 9and 12- h forecasts. In a severe convective weather case, inclusion of GPS- IPW data improved forecasts of convective available potential energy, an important predictor of severe storm potential, and relative humidity. Positive impact from GPS- IPW assimilation was found to vary over season, geographical location, and time of day, apparently related to variations in vertical mixing. For example, GPS- IPW has a stronger effect on improving RH forecasts at 850 hPa at nighttime ( than daytime) and in cooler seasons ( than warmer seasons) when surface moisture observations are less representative of conditions aloft. As a result of these studies, assimilation of GPS- IPW was added to the operational RUC run at NOAA/ NCEP in June 2005 and to the operational North American Mesoscale model ( also at NCEP) in June 2006 to improve their accuracy for short- range moisture forecasts.

Article / Publication Data
Active/Online
YES
ISSN
0027-0644
Volume
135
Available Metadata
DOI ↗
Fiscal Year
Publication Name
Monthly Weather Review
Published On
August 01, 2007
Publisher Name
Amer Meteorological Soc
Print Volume
135
Print Number
8
URL ↗

Institutions

Not available

Author

Authors who have authored or contributed to this publication.