Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

A Satellite-based Fog Detection Scheme Using Screen Air Temperature

Abstract

A warm fog detection (air temperature > -5 degrees C) algorithm using a combination of Geostationary Operational Environmental Satellite-12 (GOES-12) observations and screen temperature data based on an operational numerical model has been developed. This algorithm was tested on a large number of daytime cases during the spring and summer of 2004. Results from the scheme were compared with surface observations from four manned Canadian weather stations in Ontario, including Ottawa, Windsor, Sudbury, and Toronto. Initially, when all cases were included, fog detection (hit rate) by the satellite scheme ranged between 0.26 and 0.32. It is suggested that mid- or high-level clouds within the satellite imagery during the observed foggy periods affected the scheme's performance in detecting surface-level fog for the majority of the cases. When cases with mid- and high-level clouds were removed using model-based screen temperatures, the hit rate ranged between 0.55 and 1.0. With an average false alarm rate of 0.10, the inclusion of model-based sounding values can be seen to improve results from the satellite-based algorithms by an average of 0.42. Average differences between the screen temperature and the surface-observed air temperature were found to be up to 2 degrees C and this can likely account for some discrepancies in detecting fog. Finally, averaging GOES and model data to scales representing single data-point observations likely resulted in some of the failure of the fog algorithm.

Article / Publication Data
Active/Online
YES
ISSN
0882-8156
Volume
22
Available Metadata
DOI ↗
Fiscal Year
Publication Name
Weather and Forecasting
Published On
June 01, 2007
Publisher Name
Amer Meteorological Soc
Print Volume
22
Print Number
3

Institutions

Not available

Author

Authors who have authored or contributed to this publication.

  • Mariusz Pagowski - Not Positioned Gsl
    Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
    NOAA/Global Systems Laboratory