Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Comparing The FAA Cloud Top Height Product and The NESDIS/CIMSS Cloud Top Pressure Product In Oceanic Regions

Abstract

As part of an effort to assess the quality of the Cloud Top Height (CTOP) product recently developed by the Oceanic Weather Product Development Team (OWPDT) of the Federal Aviation Administration Aviation Weather Research Program (FAA/AWRP), a comparison of CTOP and the NESDIS/CIMSS Cloud Top Pressure (NCTP) product was performed. This study summarizes the comparison of CTOP and NCTP during two periods, 12 February–23 April and 15 August–15 September 2004, for the Pacific, North Pacific, and Gulf of Mexico oceanic domains, as defined by the OWPDT. The CTOP product, according to the concept of use, employs the IR Window technique to provide a depiction of the current locations of aviation hazards related to convection in remote oceanic regions. NCTP, in contrast, utilizes a hybrid algorithm including both the IR Window as well as the CO2-slicing approach to determine the heights of clouds with a wide range of transparency. The analysis accounts for these underlying differences by stratifying the results by the transparency of the clouds. In an attempt to delineate the different cloud regimes (i.e., hazardous versus nonhazardous), the comparison utilizes a threshold of the NESDIS/CIMSS effective cloud amount (ECA) as a proxy for the presence of convection. In addition to the detailed comparison statistics, this paper presents the results of an analysis to justify the overall comparison mechanics, which were designed to account for the temporal and spatial differences between the products. The findings of the satellite product comparison demonstrate very good agreement, with respect to values established by other cloud top height validation studies, between CTOP and NCTP for opaque and thick clouds, particularly at upper levels. The statistics for the thin cloud comparison show significant disagreement, an expected result given the theoretical strengths and weaknesses of the products.

Article / Publication Data
Active/Online
YES
Available Metadata
Fiscal Year
Published On
January 01, 2006
Event

This publication was presented at the following:

Title
12th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM)
Sponsor
American Meteorolgical Society
Type
Select

Institutions

Not available

Author

Authors who have authored or contributed to this publication.