Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Scaling The Microphysics Equations and Analyzing The Variability of Hydrometeor Production Rates In A Controlled Parameter Space

Abstract

A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.

Article / Publication Data
Active/Online
YES
ISSN
0256-1530
Volume
19
Available Metadata
Fiscal Year
Publication Name
Advances In Atmospheric Sciences
Published On
January 01, 2002
Publisher Name
China Ocean Press
Print Volume
19
Print Number
4
Submitted On
November 16, 2001

Institutions

Not available

Author

Authors who have authored or contributed to this publication.

  • Paul J. Schultz - Not Positioned Gsl
    Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
    NOAA/Global Systems Laboratory