Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Modifications To The Rapid Update Cycle Land Surface Model (ruc Lsm) Available In The Weather Research and Forecasting (WRF) Model


The land surface model (LSM) described in this manuscript was originally developed as part of the NOAA Rapid Update Cycle (RUC) model development effort; with ongoing modifications, it is now used as an option for the WRF community model. The RUC model and its WRF-based NOAA successor, the Rapid Refresh (RAP), are hourly updated and have an emphasis on short-range, near-surface forecasts including aviation-impact variables and preconvective environment. Therefore, coupling to this LSM (hereafter the RUC LSM) has been critical to provide more accurate lower boundary conditions. This paper describes changes made to the RUC LSM since earlier descriptions, including extension from six to nine levels, improved snow treatment, and new land-use data from MODIS. The RUC LSM became operational at the NOAA/National Centers for Environmental Prediction (NCEP) as part of the RUC from 1998–2012 and as part of the RAP from 2012 through the present. The simple treatments of basic land surface processes in the RUC LSM have proven to be physically robust and capable of realistically representing the evolution of soil moisture, soil temperature, and snow in cycled models. Extension of the RAP domain to encompass all of North America and adjacent high-latitude ocean areas necessitated further development of the RUC LSM for application in the tundra permafrost regions and over Arctic sea ice. Other modifications include refinements in the snow model and a more accurate specification of albedo, roughness length, and other surface properties. These recent modifications in the RUC LSM are described and evaluated in this paper.

Article / Publication Data
Available Metadata
Accepted On
December 02, 2015
Early Online Release
November 30, 2015
Fiscal Year
Peer Reviewed
Publication Name
Monthly Weather Review
Published On
May 01, 2016
Publisher Name
American Meteorological Society
Print Volume
Print Number
Page Range
Submitted On
May 19, 2015


Authors who have authored or contributed to this publication.