Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Assessing The Grell-freitas Convection Parameterization In The NASA Geos Modeling System

Abstract

We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) general circulation model (GCM). The proposed parameterization follows the mass flux approach with several closures, for equilibrium and nonequilibrium convection, and includes scale and aerosol aware functionalities. Recently, we extended the scheme to a trimodal spectral size distribution of allowed convective plumes to simulate the transition among shallow, congestus, and deep convection regimes. In addition, the inclusion of a new closure for nonequilibrium convection resulted in a substantial gain of realism in the model representation of the diurnal cycle of convection over the land. We demonstrated the scale-dependence functionality with a cascade of global-scale simulations from a nominal horizontal resolution of 50 km down to 6 km. The ability to realistically simulate the diurnal cycle of precipitation over various regions of the earth was verified against several remote sensing-derived intradiurnal precipitation estimates. We extended the model performance evaluation for weather-scale applications by bringing together some available operational short-range weather forecast models and global atmospheric reanalyses. Our results demonstrate that the GEOS GCM with the alternative convective parameterization has good properties and competitive skill in comparison with state-of-the-art observations and numerical simulations.

Article / Publication Data
Active/Online
YES
Volume
10
Available Metadata
Accepted On
April 26, 2018
DOI ↗
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Journal of Advances In Modeling Earth Sciences
Published On
June 01, 2018
Publisher Name
American Geophysical Union
Print Volume
10
Print Number
6
Page Range
1266-1289
Issue
6
Submitted On
November 27, 2017
URL ↗

Authors

Authors who have authored or contributed to this publication.