Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Saulo R. Freitas

Affiliation/Employer
Other
Partner Affiliation
none
ORCID
Not available
Publon ID
Not available

Publications

Corresponding Articles: 6

Saulo R. Freitas authored and/or contributed to the following articles/publications.

Cascading Toward a Kilometer-Scale GCM: Impacts of a Scale-Aware Convection Parameterization in the Goddard Earth Observing System GCM

The National Aeronautics and Space Administration (NASA) Goddard Earth Observing System global circulation model (GCM) is evaluated through a cascade of simulations with increasing horizontal resolution. This model employs a nonhydrostatic dynamical core and includes a scale?aware, deep convection parameterization (DPCP). The 40?day simulations ...

Saulo R. Freitas
Institution National Oceanic and Atmospheric Administration - NOAA

A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling

A convective parameterization is described and evaluated that may be used in high resolution non-hydrostatic mesoscale models as well as in modeling system with unstructured varying grid resolutions and for convection aware simulations. This scheme is based on a stochastic approach originally implemented by Grell and Devenyi (2002). Two approach...

Saulo R. Freitas
Institution National Oceanic and Atmospheric Administration - NOAA

The Grell–Freitas (GF) convection parameterization: recent developments, extensions, and applications

Recent developments and options in the GF (Grell and Freitas, 2014; Freitas et al., 2018) convection parameterization are presented. The parameterization has been expanded to a trimodal spectral size to simulate three convection modes: shallow, congestus, and deep. In contrast to usual entrainment and detrainment assumptions, we assume that beta...

Saulo R. Freitas
Institution National Oceanic and Atmospheric Administration - NOAA

Assessing the Grell-Freitas Convection Parameterization in the NASA GEOS Modeling System

We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) general circulation model (GCM). The proposed parameterization follows the mass flux approach with several closures, for equilibrium and nonequilibrium convection, and includes scale and aerosol aware functionalities...

Saulo R. Freitas
Institution National Oceanic and Atmospheric Administration - NOAA

Impacts of estimated plume rise on PM2.5 exceedance prediction during extreme wildfire events: A comparison of three schemes (Briggs, Freitas, and Sofiev)

Plume height plays a vital role in wildfire smoke dispersion and the subsequent effects on air quality and human health. In this study, we assess the impact of different plume rise schemes on predicting the dispersion of wildfire air pollution, and the exceedances of the National Ambient Air Quality Standards (NAAQS) for fine particulate matter ...

Saulo R. Freitas
Institution National Oceanic and Atmospheric Administration - NOAA

Heat flux assumptions contribute to overestimation of wildfire smoke injection into the free troposphere

Injections of wildfire smoke plumes into the free troposphere impact air quality, yet model forecasts of injections are poor. Here, we use aircraft observations obtained during the 2019 western US wildfires (FIREX-AQ) to evaluate a commonly used smoke plume rise parameterization in two atmospheric chemistry-transport models (WRF-Chem and HRRR-Sm...

Saulo R. Freitas
Institution National Oceanic and Atmospheric Administration - NOAA