Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Incorporation of The Rotor-equivalent Wind Speed Into The Weather Research and Forecasting Model’s Wind Farm Parameterization

Abstract

Wind power installations have been increasing in recent years. Because wind turbines can influence local wind speeds, temperatures and surface fluxes, weather forecasting models should consider their effects. Wind farm parameterizations do currently exist for numerical weather prediction models. They generally consider two turbine impacts: elevated drag in the region of the wind turbine rotor disk and increased turbulent kinetic energy production. The wind farm parameterization available in the Weather Research and Forecasting model (WRF) calculates this drag and TKE as a function of hub-height wind speed. However, recent work has suggested that integrating momentum over the entire rotor disk (via a rotor-equivalent wind speed, or REWS) is more appropriate, especially for cases with high wind shear. In this study, we implement the REWS in the WRF wind farm parameterization and evaluate its impacts in an idealized environment, with varying amounts of wind speed shear and wind directional veer. Specifically, we evaluate three separate cases: neutral stability with low wind shear; high stability with high wind shear; and high stability with nonlinear wind shear. For most situations, use of the REWS with the wind farm parameterization has marginal impacts on model forecasts. However, for scenarios with highly nonlinear wind shear, the REWS can significantly affect results.

Article / Publication Data
Active/Online
YES
Volume
147
Available Metadata
Accepted On
January 18, 2019
DOI ↗
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Monthly Weather Report
Published On
March 01, 2019
Publisher Name
American Meteorological Society
Print Volume
147
Print Number
3
Page Range
1029–1046
Issue
3
Submitted On
May 30, 2018
URL ↗

Authors

Authors who have authored or contributed to this publication.