The forcing and origins of an internal rear-flank downdraft (RFD) momentum surge observed by the second Verification of the Origin of Rotation in Tornadoes Experiment (VORTEX2) within a supercell occurring near Dumas, Texas, on 18 May 2010 is assessed through ensemble Kalman filter (EnKF) storm-scale analyses. EnKF analyses are produced every 2 min from mobile Doppler velocity data collected by the Doppler on Wheels and Shared Mobile Atmospheric Research and Teaching radars, as well as radial velocity and reflectivity data from the KAMA (Amarillo, Texas) WSR-88D. EnKF analyses are found to reproduce the structure and evolution of an internal RFD momentum surge observed in independent mobile Doppler radar observations. Pressure retrievals of EnKF analyses reveal that the low-level RFD outflow structure is primarily determined through nonlinear dynamic perturbation pressure gradient forcing. Horizontal acceleration into a trough of low perturbation pressure between the low-level mesocyclone and mesoanticyclone and trailing the primary RFD gust front is followed by an abrupt deceleration of air parcels crossing the trough axis. This deceleration and associated strong convergence downstream of the pressure trough and horizontal velocity maximum are indicative of an internal RFD momentum surge. Backward trajectory analyses reveal that air parcels within the RFD surge originate from two source regions: near the surface to the north of the low-level mesocyclone, and in the ambient flow outside of the storm environment at a height of approximately 2 km.
Authors who have authored or contributed to this publication.