Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Wind Ramp Events Validation In NWP Forecast Models During The Second Wind Forecast Improvement Project (WFIP2) Using The Ramp Tool and Metric (RT&M)

Abstract

The second Wind Forecast Improvement Project (WFIP2) is a multiagency field campaign held in the Columbia Gorge area (October 2015–March 2017). The main goal of the project is to understand and improve the forecast skill of numerical weather prediction (NWP) models in complex terrain, particularly beneficial for the wind energy industry. This region is well known for its excellent wind resource. One of the biggest challenges for wind power production is the accurate forecasting of wind ramp events (large changes of generated power over short periods of time). Poor forecasting of the ramps requires large and sudden adjustments in conventional power generation, ultimately increasing the costs of power. A Ramp Tool and Metric (RT&M) was developed during the first WFIP experiment, held in the U.S. Great Plains (September 2011–August 2012). The RT&M was designed to explicitly measure the skill of NWP models at forecasting wind ramp events. Here we apply the RT&M to 80-m (turbine hub-height) wind speeds measured by 19 sodars and three lidars, and to forecasts from the High-Resolution Rapid Refresh (HRRR), 3-km, and from the High-Resolution Rapid Refresh Nest (HRRRNEST), 750-m horizontal grid spacing, models. The diurnal and seasonal distribution of ramp events are analyzed, finding a noticeable diurnal variability for spring and summer but less for fall and especially winter. Also, winter has fewer ramps compared to the other seasons. The model skill at forecasting ramp events, including the impact of the modification to the model physical parameterizations, was finally investigated.

Article / Publication Data
Active/Online
YES
Volume
35
Available Metadata
Accepted On
September 03, 2020
DOI ↗
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Weather and Forecasting
Published On
December 01, 2020
Publisher Name
American Meteorological Society
Print Volume
35
Print Number
6
Page Range
2407–2421
Issue
6
Submitted On
May 07, 2020
Project Type
LAB SUPPORTED
URL ↗

Authors

Authors who have authored or contributed to this publication.