Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Observational Case Study of A Persistent Cold Pool and Gap Flow In The Columbia River Basin

Abstract

Persistent cold pools form as layers of cold stagnant air within topographical depressions mainly during wintertime when the near-surface air cools and/or the air aloft warms and daytime surface heating is insufficient to mix out the stable layer. An area often affected by persistent cold pools is the Columbia River Basin in the Pacific Northwest, when a high-pressure system east of the Cascade Range promotes radiative cooling and easterly flow. The only major outflow for the easterly flow is through the narrow Columbia River Gorge which cuts through the north-south oriented Cascade Range and often experiences very strong gap flows. Observations collected during the Second Wind Forecast Improvement Project (WFIP2) are used to study a persistent cold pool in the Columbia River Basin between 10-19 Jan 2017 which was associated with a strong gap flow. We used data from various remote sensing and in situ instruments and a optimal estimation physical retrieval to obtain thermodynamic profiles to address the temporal and spatial characteristics of the cold pool and gap flow and to investigate the physical processes involved during formation, maintenance and decay. While large-scale temperature advection occurred during all phases, we found that the cold pool vertical structure was modulated by the existence of low-level clouds and that turbulent shear-induced mixing and downslope wind storms likely played a role during its decay.

Article / Publication Data
Active/Online
YES
Available Metadata
DOI ↗
Early Online Release
July 08, 2021
Fiscal Year
NOAA IR URL ↗
Peer Reviewed
YES
Publication Name
Journal of Applied Meteorology and Climatology
Published On
July 08, 2021
Publisher Name
American Meteorological Society
Print Volume
60
Issue
8
URL ↗

Authors

Authors who have authored or contributed to this publication.