Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Impact of Seasonal Snow-cover Change On The Observed and Simulated State of The Atmospheric Boundary Layer In A High-altitude Mountain Valley

Abstract

The structure and evolution of the atmospheric boundary layer (ABL) under clear-sky fair weather conditions over mountainous terrain is dominated by the diurnal cycle of the surface energy balance and thus strongly depends on surface snow cover. We use data from three passive ground-based infrared spectrometers deployed in the East River Valley in Colorado's Rocky Mountains to investigate the response of the thermal ABL structure to changes in surface energy balance during the seasonal transition from low to high snow cover. Temperature profiles were retrieved from the infrared radiances using the optimal estimation physical retrieval Tropospheric Remotely Observed Profiling via Optimal Estimation. A nocturnal surface inversion formed in the valley during clear-sky days, which was subsequently mixed out during daytime with the development of a convective boundary layer when snow cover was low. Over high snow cover, a very shallow convective boundary layer formed, above which the inversion persisted through the daytime hours. We compare these observations to NOAA's operational High-Resolution-Rapid-Refresh model and find large warm biases on clear-sky days resulting from the model's inability to form strong nocturnal inversions and to maintain the stable stratification in the valley during daytime when there was snow on the ground. We suggest several factors contributing to the large model errors. These are (a) the inability of the model to represent well-developed thermally driven flows likely due to the too coarse horizontal grid spacing (3 km), (b) too much convective mixing during daytime, and (c) too strong vertical coupling between the valley atmosphere and the free troposphere. Key Points Temperature profiles retrieved from remotely sensed infrared radiances characterize the valley boundary layer over different snow covers The nocturnal inversion in a high-altitude mountain valley is mixed out over low snow cover and persists when snow cover is high NOAA's operational weather prediction model struggles to correctly forecast the boundary layer especially when snow cover is high

Article / Publication Data
Active/Online
YES
Available Metadata
DOI ↗
Fiscal Year
Peer Reviewed
YES
Publication Name
Agu - Jgr Atmospheres
Published On
June 14, 2023
Publisher Name
AGU
Print Volume
128
Issue
12
URL ↗

Authors

Authors who have authored or contributed to this publication.