Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Ming Hu

Affiliation/Employer
Federal
Partner Affiliation
gsl
Publon ID

Publications

Corresponding Articles: 22

Ming Hu authored and/or contributed to the following articles/publications.

Introduction to Community Gridpoint Statistical Interpolation System (GSI) and its User Support

Over the last three years, the Developmental Testbed Center (DTC) has made a significant investment transitioning the National Centers for Environmental Prediction (NCEP) operational data assimilation system, Gridpoint Statistical Interpolation (GSI), to a community resource. The DTC, as of the summer of 2010, has released two versions of commun...

Ming Hu

Hourly data assimilation with the Gridpoint Statistical Interpolation for the Rapid Refresh

The Rapid Refresh (RR) model and analysis system, currently under development at the Earth System Research Laboratory (ESRL), will replace the Rapid Update Cycle (RUC) in 2009. The RUC has been operational at the National Centers for Environmental Prediction (NCEP) since 1994. It is a high-frequency (hourly) data assimilation and prediction syst...

Ming Hu

An Evaluation of a Hybrid, Terrain-Following Vertical Coordinate in the WRF-based RAP and HRRR Models

A new hybrid, sigma-pressure vertical coordinate was recently added to the Weather Research and Forecasting (WRF) model in an effort to reduce numerical noise in the model equations near complex terrain. Testing of this hybrid, terrain-following coordinate was undertaken in the WRF-based Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRR...

Ming Hu

A Regional GSI-Based Ensemble Kalman Filter Data Assimilation System for the Rapid Refresh Configuration: Testing at Reduced Resolution

A regional ensemble Kalman filter (EnKF) system is established for potential Rapid Refresh (RAP) operational application. The system borrows data processing and observation operators from the gridpoint statistical interpolation (GSI), and precalculates observation priors using the GSI. The ensemble square root Kalman filter (EnSRF) algorithm is ...

Ming Hu
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA

A GSI-Based Coupled EnSRF–En3DVar Hybrid Data Assimilation System for the Operational Rapid Refresh Model: Tests at a Reduced Resolution

A coupled ensemble square root filter–three-dimensional ensemble-variational hybrid (EnSRF–En3DVar) data assimilation (DA) system is developed for the operational Rapid Refresh (RAP) forecasting system. The En3DVar hybrid system employs the extended control variable method, and is built on the NCEP operational gridpoint statistical interpolation...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Stratiform Cloud-Hydrometeor Assimilation for HRRR and RAP Model Short-Range Weather Prediction

Accurate cloud and precipitation forecasts are a fundamental component of short-range data assimilation/model prediction systems such as the NOAA 3-km High-Resolution Rapid Refresh (HRRR) or the 13-km Rapid Refresh (RAP). To reduce cloud and precipitation spinup problems, a nonvariational assimilation technique for stratiform clouds was develope...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Toward a Better Regional Ozone Forecast Over CONUS Using Rapid Data Assimilation of Clouds and Meteorology in WRF-Chem

Accuracy of cloud predictions in numerical weather models can considerably impact ozone (O3) forecast skill. This study assesses the benefits in surface O3 predictions of using the Rapid Refresh (RAP) forecasting system that assimilates clouds as well as conventional meteorological variables at hourly time scales. We evaluate and compare the WRF...

Ming Hu
Institutions National Center for Atmospheric Research - NCAR National Oceanic and Atmospheric Administration - NOAA

The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter

A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Ini...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

GSI Three-Dimensional Ensemble–Variational Hybrid Data Assimilation Using a Global Ensemble for the Regional Rapid Refresh Model

The Rapid Refresh (RAP) is an hourly updated regional meteorological data assimilation/short-range model forecast system running operationally at NOAA/National Centers for Environmental Prediction (NCEP) using the community Gridpoint Statistical Interpolation analysis system (GSI). This paper documents the application of the GSI three-dimensiona...

Ming Hu
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA

Radiance Preprocessing for Assimilation in the Hourly Updating Rapid Refresh Mesoscale Model: A Study Using AIRS Data

This study describes the initial application of radiance bias correction and channel selection in the hourly updated Rapid Refresh model. For this initial application, data from the Atmospheric Infrared Sounder (AIRS) are used; this dataset gives atmospheric temperature and water vapor information at higher vertical resolution and accuracy than ...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Satellite Radiance Data Assimilation within the Hourly Updated Rapid Refresh

Assimilation of satellite radiance data in limited-area, rapidly updating weather model/assimilation systems poses unique challenges compared to those for global model systems. Principal among these is the severe data restriction posed by the short data cutoff time. Also, the limited extent of the model domain reduces the spatial extent of satel...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Assessment of Storm-Scale Real Time Assimilation of GOES-16 GLM Lightning-Derived Water Vapor Mass on Short Term Precipitation Forecasts during the 2020 Spring Forecast Experiment

This study assesses the impact of assimilating pseudo-observations for water vapor mass derived from the Geostationary Operational Environmental Satellites GOES-16 lightning data on short-term quantitative precipitation forecasts (QPFs) over the contiguous United States (CONUS), with an emphasis given to regions characterized by an overall poor ...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

The Aerosol Module in the Community Radiative Transfer Model (v2.2 and v2.3): accounting for aerosol transmittance effects on the radiance observation operator

The Community Radiative Transfer Model (CRTM), a sensor-based radiative transfer model, has been used within the Gridpoint Statistical Interpolation (GSI) system for directly assimilating radiances from infrared and microwave sensors. We conducted numerical experiments to illustrate how including aerosol radiative effects in CRTM calculations ch...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh

The Rapid Refresh (RAP), an hourly-updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly-updated assimilation and modeling sys...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Bridging Research to Operations Transitions: Status and Plans of Community GSI

With a goal of improving operational numerical weather prediction (NWP), the Developmental Testbed Center (DTC) has been working with operational centers, including, among others, the National Centers for Environmental Prediction (NCEP), National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA),...

Ming Hu
Institution National Center for Atmospheric Research - NCAR

The Influence of Aerosols on Satellite Infrared Radiance Simulations and Jacobians: Numerical Experiments of CRTM and GSI

For a variational data assimilation (DA) system that assimilates radiance observations, the simulated brightness temperature (BT) at the top of the atmosphere and the corresponding Jacobians carried out by the radiance observation operator are needed information. Previous studies reported that the incorporation of aerosol information into the ra...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Expanding the High-Resolution Rapid Refresh (HRRR) from Deterministic to Ensemble Data Assimilation, Forecasts and Post-Processing

The 13-km Rapid Refresh (RAP) and 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) are hourly updating weather forecast models that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Rap and HRRR Model/Assimilation System Improvements for Aviation Weather Applications: Latest Upgrades and Ongoing Work

An operational upgrade of the RAP and HRRR model systems at NCEP is planned for August 2016. This coordinated upgrade (RAP version 3 and HRRR version 2, RAPv3/HRRRv2) includes many enhancements to the data assimilation, model, and post-processing formulations that result in significant improvements to nearly all forecast aspects, including uppe...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Radar Reflectivity-based Model Initialization using Specified Latent Heating (Radar-LHI) within a Diabatic Digital Filter or Pre-forecast Integration

A technique for model initialization using three-dimensional radar reflectivity data has been developed and applied within the NOAA 13-km Rapid Refresh (RAP) and 3-km High-Resolution Rapid Refresh (HRRR) regional forecast systems. This technique enabled the first assimilation of radar reflectivity data for operational NOAA forecast models, criti...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part 1: Motivation and System Description

The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Weather Research and Forecasting model (WRF-ARW) with hourly data assimilation that covers the conterminous United States and Alaska and runs in real time at the NOAA National Centers for Environmental Prediction. Implemented operationally at NOAA/NCEP in 201...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part 2: Forecast Performance

The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced Weather Research and Forecast model (WRF-ARW) that covers the conterminous United States and Alaska and runs hourly (for CONUS; every three hours for Alaska) in real time at the National Centers for Environmental Prediction. The high-resolution forec...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA

Land–Snow Data Assimilation Including a Moderately Coupled Initialization Method Applied to NWP

Initialization methods are needed for geophysical components of Earth system prediction models. These methods are needed from medium-range to decadal predictions and also for short-range Earth system forecasts in support of safety (e.g., severe weather), economic (e.g., energy), and other applications. Strongly coupled land–atmosphere data assim...

Ming Hu
Institution National Oceanic and Atmospheric Administration - NOAA