Larry K. Berg authored and/or contributed to the following articles/publications.
The wind-energy (WE) industry relies on numerical weather prediction (NWP) forecast models as foundational or base models for many purposes, including wind-resource assessment and wind-power forecasting. During the Second Wind Forecast Improvement Project (WFIP2) in the Columbia River Basin of Oregon and Washington, a significant effort was made...
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA
The Mellor‐Yamada‐Nakanishi‐Niino (MYNN) parameterization applied in the Weather Research and Forecasting (WRF) model has been augmented to include the Eddy‐Diffusion Mass‐Flux (EDMF) approach to better represent transport by boundary‐layer eddies. This change includes the addition of new parameters associated with convective updrafts and bounda...
Institution National Oceanic and Atmospheric Administration - NOAA
On the estimation of boundary layer heights: A machine learning approach
The planetary boundary-layer height (zi) is a key parameter used in atmospheric models for estimating the exchange of heat, momentum and moisture between the surface and the free troposphere. Near-surface atmospheric and subsurface properties (such as soil temperature, relative humidity etc.) are known to have an impact on zi. Nevertheless, prec...
Institution National Oceanic and Atmospheric Administration - NOAA
One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma was analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was normalized by the Deardorff convective velo...
Institution National Oceanic and Atmospheric Administration - NOAA
We extend the model sensitivity analysis of Yang et al. (Boundary-Layer Meteorol 162: 117–142, 2017) to include results for February 2011, in addition to May of the same year. We investigate the sensitivity of simulated hub-height wind speeds to the selection of 12 parameters applied in the Mellor–Yamada–Nakanishi–Niino planetary boundary-layer ...
Institution National Oceanic and Atmospheric Administration - NOAA
Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer
With the increasing level of offshore wind energy investment, it is correspondingly important to be able to accurately characterize the wind resource in terms of energy potential as well as operating conditions affecting wind plant performance, maintenance, and lifespan. Accurate resource assessment at a particular site supports investment decis...
Institution National Oceanic and Atmospheric Administration - NOAA
In this study, we investigate the parametric sensitivity of near-surface variables, such as sensible heat flux, latent heat flux, ground heat flux, hub-height wind speed and land surface temperature, to the parameters used in the rapid update cycle (RUC) land surface model (LSM) during a winter and summer periods. The model simulations are compa...
Institution National Oceanic and Atmospheric Administration - NOAA