Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Evaluating The WFIP2 Updates To The HRRR Model Using Scanning Doppler Lidar Measurements In The Complex Terrain of The Columbia River Basin

Abstract

The wind-energy (WE) industry relies on numerical weather prediction (NWP) forecast models as foundational or base models for many purposes, including wind-resource assessment and wind-power forecasting. During the Second Wind Forecast Improvement Project (WFIP2) in the Columbia River Basin of Oregon and Washington, a significant effort was made to improve NWP forecasts through focused model development, to include experimental refinements to the High Resolution Rapid Refresh (HRRR) model physics and horizontal grid spacing. In this study, the performance of an experimental version of HRRR that includes these refinements is tested against a control version, which corresponds to that of the operational HRRR run by National Oceanic and Atmospheric Administration/National Centers for Environmental Protection at the outset of WFIP2. The effects of horizontal grid resolution were also tested by comparing wind forecasts from the HRRR (with 3-km grid spacing) with those from a finer-resolution HRRR nest with 750-m grid spacing. Model forecasts are validated against accurate wind-profile measurements by three scanning, pulsed Doppler lidars at sites separated by a total distance of 71?km. Model skill and improvements in model skill, attributable to physics refinements and improved horizontal grid resolution, varied by season, by site, and during periods of atmospheric phenomena relevant to WE. In general, model errors were the largest below 150 m above ground level (AGL). Experimental HRRR refinements tended to reduce the mean absolute error (MAE) and other error metrics for many conditions, but degradation in skill (increased MAE) was noted below 150 m AGL at the two lowest-elevation sites at night. Finer resolution was found to produce the most significant reductions in the error metrics.

Article / Publication Data
Active/Online
YES
Status
FINAL PRINT PUBLICATION
Volume
12
Available Metadata
Accepted On
June 16, 2020
DOI ↗
Fiscal Year
Peer Reviewed
YES
Publication Name
Journal of Renewable and Sustainable Energy
Published On
August 11, 2020
Final Print Publication On
August 11, 2020
Publisher Name
American Institute Of Physics
Print Volume
12
Print Number
4
Page Range
Article 043301
Issue
4
Project Type
LAB SUPPORTED
URL ↗

Authors

Authors who have authored or contributed to this publication.