Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Evaluating Operational and Experimental HRRR Model Forecasts of Atmospheric River Events In California

Abstract

Improved forecasts of atmospheric river (AR) events, which provide up to half the annual precipitation in California, may reduce impacts to water supply, lives, and property. We evaluate quantitative precipitation forecasts (QPF) from the High-Resolution Rapid Refresh model version 3 (HRRRv3) and version 4 (HRRRv4) for five AR events that occurred in February–March 2019 and compare them to quantitative precipitation estimates (QPE) from Stage IV and Mesonet products. Both HRRR versions forecast spatial patterns of precipitation reasonably well, but are drier than QPE products in the Bay Area and wetter in the Sierra Nevada range. The HRRR dry bias in the Bay Area may be related to biases in the model temperature profile, while integrated water vapor (IWV), wind speed, and wind direction compare reasonably well. In the Sierra Nevada range, QPE and QPF agree well at temperatures above freezing. Below freezing, the discrepancies are due in part to errors in the QPE products, which are known to underestimate frozen precipitation in mountainous terrain. HRRR frozen QPF accuracy is difficult to quantify, but the model does have wind speed and wind direction biases near the Sierra Nevada range. HRRRv4 is overall more accurate than HRRRv3, likely due to data assimilation improvements, and possibly physics improvements. Applying a neighborhood maximum method impacted performance metrics, but did not alter general conclusions, suggesting closest gridbox evaluations may be adequate for these types of events. Improvements to QPF in the Bay Area and QPE/QPF in the Sierra Nevada range would be particularly useful to provide better understanding of AR events.

Article / Publication Data
Active/Online
YES
Available Metadata
DOI ↗
Fiscal Year
Peer Reviewed
YES
Publication Name
Weather and Forecasting
Published On
October 21, 2021
Publisher Name
American Meteorological Society
Print Volume
36
Issue
6
Submitted On
May 21, 2021
URL ↗

Authors

Authors who have authored or contributed to this publication.