Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Trevor I. Alcott

Affiliation/Employer
Federal
Partner Affiliation
gsl
ORCID
Not available
Publon ID

Publications

Corresponding Articles: 11

Trevor I. Alcott authored and/or contributed to the following articles/publications.

A Progress Report on the Development of the High-Resolution Rapid Refresh Ensemble

The High-Resolution Rapid Refresh Ensemble (HRRRE) is a 36-member ensemble analysis system with 9 forecast members that utilizes the Advanced Research version of the Weather Research and Forecasting (ARW-WRF) dynamic core and the physics suite from the operational Rapid Refresh/High-Resolution Rapid Refresh deterministic modeling system. A goal ...

Trevor I. Alcott
Institutions National Center for Atmospheric Research - NCAR National Oceanic and Atmospheric Administration - NOAA

Recommendations for Developing Useful and Usable Convection-Allowing Model Ensemble Information for NWS Forecasters

U.S. National Weather Service (NWS) forecasters assess and communicate hazardous weather risks, including the likelihood of a threat and its impacts. Convection-allowing model (CAM) ensembles offer potential to aid forecasting by depicting atmospheric outcomes, including associated uncertainties, at the refined space and time scales at which haz...

Trevor I. Alcott
Institutions National Center for Atmospheric Research - NCAR National Oceanic and Atmospheric Administration - NOAA

An Adaptive Approach for the Calculation of Ensemble Gridpoint Probabilities

Traditional ensemble probabilities are computed based on the number of members that exceed a threshold at a given point divided by the total number of members. This approach has been employed for many years in coarse-resolution models. However, convection-permitting ensembles of less than ~20 members are generally underdispersive, and spatial di...

Trevor I. Alcott
Institution National Oceanic and Atmospheric Administration - NOAA

Evaluating the Experimental High-Resolution Rapid Refresh–Alaska Modeling System Using USArray Pressure Observations

The High-Resolution Rapid Refresh–Alaska (HRRR-AK) modeling system provides 3-km horizontal resolution and 0–36-h forecast guidance for weather conditions over Alaska. This study evaluated the experimental version of the HRRR-AK system available from December 2016 to June 2017, prior to its operational deployment by the National Centers for Envi...

Trevor I. Alcott
Institution National Oceanic and Atmospheric Administration - NOAA

GEFS Precipitation Forecasts and the Implications of Statistical Downscaling over the Western United States

Contemporary operational medium-range ensemble modeling systems produce quantitative precipitation forecasts (QPFs) that provide guidance for weather forecasters, yet lack sufficient resolution to adequately resolve orographic influences on precipitation. In this study, cool-season (October–March) Global Ensemble Forecast System (GEFS) QPFs are ...

Trevor I. Alcott
Institution National Oceanic and Atmospheric Administration - NOAA

Evaluating Operational and Experimental HRRR Model Forecasts of Atmospheric River Events in California

Improved forecasts of atmospheric river (AR) events, which provide up to half the annual precipitation in California, may reduce impacts to water supply, lives, and property. We evaluate quantitative precipitation forecasts (QPF) from the High-Resolution Rapid Refresh model version 3 (HRRRv3) and version 4 (HRRRv4) for five AR events that occurr...

Trevor I. Alcott
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA

Ensemble Prediction with the High-Resolution Rapid Refresh (HRRR): Providing Probabilistic Forecasts of Weather Hazards for Aviation

The 13-km Rapid Refresh (RAP) and 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) are hourly updating weather forecast models that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation...

Trevor I. Alcott
Institution National Oceanic and Atmospheric Administration - NOAA

Evaluation of Several Spatial Filtering Methods for Probabilistic CPM Ensemble Forecasts

To support the goals of a collaborative project through the US Weather Research Program (USWRP), which is focused on developing high-resolution ensemble-based hazard detection guidance tools, several convection-allowing model (CAM) ensemble post-processing methods are currently being evaluated with the operational version of the High Resolution ...

Trevor I. Alcott

Expanding the High-Resolution Rapid Refresh (HRRR) from Deterministic to Ensemble Data Assimilation, Forecasts and Post-Processing

The 13-km Rapid Refresh (RAP) and 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) are hourly updating weather forecast models that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation...

Trevor I. Alcott
Institution National Oceanic and Atmospheric Administration - NOAA

The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part 1: Motivation and System Description

The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Weather Research and Forecasting model (WRF-ARW) with hourly data assimilation that covers the conterminous United States and Alaska and runs in real time at the NOAA National Centers for Environmental Prediction. Implemented operationally at NOAA/NCEP in 201...

Trevor I. Alcott
Institution National Oceanic and Atmospheric Administration - NOAA

Advanced Quantitative Precipitation Information: Improving Monitoring and Forecasts of Precipitation, Streamflow, and Coastal Flooding in the San Francisco Bay Area

Advanced Quantitative Precipitation Information (AQPI) is a synergistic project that combines observations and models to improve monitoring and forecasts of precipitation, streamflow, and coastal flooding in the San Francisco Bay area. As an experimental system, AQPI leverages more than a decade of research, innovation, and implementation of a s...

Trevor I. Alcott
Institution National Oceanic and Atmospheric Administration - NOAA